Q1.
Solve this equation.

$$
7 y+12=5 y+40
$$

2 marks

Q2.
n and p stand for two numbers.
n is a multiple of 5
p is a multiple of 6
$\frac{n}{p}=\frac{2}{3}$

Find numbers that n and p stand for.

Q3.
In a survey of children's favourite fruit juices, these were the results.

Juice	Apple	Orange	Grape	Mango
Percentage of children	25%	14%	30%	31%

(a) $\mathbf{2 0}$ more children chose grape than chose apple.

How many children took part in the survey?

(b) Chen makes a pie chart to show the results.

What angle should he use for the children who chose mango?

Q4.

Write the missing number.

Q5.
Alfie did a survey to find which soup was most popular.
The choices were:

- tomato
- chicken

- mushroom

A quarter of the children chose chicken soup.
Four times as many children chose tomato soup as chose mushroom soup.
Alfie makes a pie chart to show this information.
What angle should he use for the children who chose tomato soup?

Q6.
In a survey people were asked if they like tea and coffee.
The results are in this Venn diagram.

(a) What percentage of people in the survey like both tea and coffee?
(b) What percentage of people in the survey do not like coffee?

Q7.
Anna says $\frac{4}{7}$ is greater than $\frac{5}{9}$
Explain why Anna is correct.

1 mark

Q8.
The pie chart shows the Year groups of children at Woodland Infant School.

There are 56 children in Year 1.
How many children are there in Reception?

Q9.
What is 10% of a half?

What percentage of 20 is $19 ?$

Q10.

Here is a sequence of shapes.
Each time a square is added to a shape, two more circles are added.

number of squares, \boldsymbol{s}
1
2
3
number of circles, \boldsymbol{c}
4
6
8

The sequence of shapes continues.
The formula for the sequence is $\boldsymbol{c}=\mathbf{2 s + 2}$

Calculate the number of circles when the number of squares in a shape is $\mathbf{1 5 0}$.
circles
1 mark
How many squares are there in a shape that has $\mathbf{1 0 0}$ circles?

Q11.

In this circle, each shaded part is $\frac{1}{5}$ of the area of the circle.
The two white parts have equal areas.

What fraction of the circle is one of the white areas?

Q12.

A shop makes 100 sandwiches.
All the sandwiches are either cheese or tuna.
Some of the sandwiches also have salad with the cheese or tuna.
30 sandwiches have cheese with salad.
15 sandwiches have tuna without salad.
75 sandwiches have salad.
How many sandwiches have cheese without salad?

Q13.

This photograph shows three Russian dolls.

The real-life height of the largest Russian doll is $\mathbf{1 3 . 5} \mathbf{~ c m}$.
What is the real-life height of the smallest Russian doll?

Q14.

Solve this equation to find the value of y.

$$
8(y+12)=100
$$

Q15.
Chen chooses a prime number.
He multiplies it by 10 and then rounds it to the nearest hundred.
His answer is 400.

Write all the possible prime numbers Chen could have chosen.

Q16.
Alfie asks some boys and girls about their favourite hobby.
He shows the results on a graph.

The graph shows that 44% of boys chose sport.
Estimate the percentage of girls who chose sport.

1 mark
120 boys chose reading.
Estimate the number of boys who chose cinema.

Q17.

Megan goes on a walking holiday for five days.
The table shows how far she walked on the first four days.

Monday	Tuesday	Wednesday	Thursday
14 km	23 km	13 km	13 km

Megan says,
'My average for the first four days is more than 15 km.'

Explain why Megan is correct.

Friday is her last day.
She wants to increase her average to $\mathbf{1 7} \mathbf{~ k m}$.
How many kilometres must she walk on Friday?

Q18.
Here is a trapezium with a height of 10 centimetres.

The parallel sides are 5.5 cm long and 10.5 cm long.
Find the area of the trapezium.

Q19.
Runa and Jon each start with the same number.

Runa rounds the number to the nearest hundred.
Jon rounds the number to the nearest ten.

Runa's answer is double Jon's answer.
Explain how this can be.

Q20.

Look at this expression.

$$
10 y+2
$$

When $y=0.4$, the value of $10 y+2$ is an even number because $10 \times 0.4+2=6$

Write a value for y so that $10 y+2$ is a prime number.

```
y=
```

1 mark
Now write a value for y so that $10 y+2$ is a square number.

```
y=
```

1 mark

Q21.

Look at this information.

Tom was born in 1988
Ben was born in 2000

Tom and Ben have the same birthday.
The ratio of Tom's age to Ben's age on their birthday in 2001 was 13 : 1.

What was the ratio of Tom's age to Ben's age on their birthday in 2003?
Write the ratio in its simplest form.

1 mark
In what year was the ratio of Tom's age to Ben's age 3 : 1?

Q22.
The factors of 11 sum to 12

Write the other number whose factors sum to 12

1 mark

Q23.

The box below shows all the possible values for x.
x is a whole number.
$40<x<45$
x could be $\frac{41,42,43 \text { or }}{\underline{44}}$

Write all the possible values for k.

k is a whole number. $29<2 k<35$ k could be

Write all the possible values for w.

w is a whole number.
$18<3 w+1<24$
w could be

Q24.

Look at these equations.

$$
\begin{aligned}
& a=2 b \\
& b=3 c
\end{aligned}
$$

Which equation below is also true?
Put a ring round the correct one.

$$
\begin{gathered}
b=2 a \quad a=2 b+3 c \quad a=5 c \\
a=6 c \quad a+b=5
\end{gathered}
$$

Q25.
This square is divided into three parts.

Part \mathbf{A} is $\frac{\mathbf{1}}{\mathbf{3}}$ of the area of the square.
Part \mathbf{B} is $\overline{\mathbf{2}}$ of the area of the square.
What fraction of the area of the square is part \mathbf{C} ?

Q26.
Paulo makes a sequence of numbers.
He chooses a starting number and then subtracts equal amounts each time.
The third number in his sequence is $\mathbf{4 5}$
The tenth number is $\mathbf{- 3 2}$
45

\square

\square
\square
$\square$$-32$

What is the first number in the sequence?

Q27.
150 people take part in a walk.

This chart shows the number of people still walking at different times.

Use the chart to estimate the time when two-thirds of the people are still on the walk.

1 mark
What percentage of the people who started are still on the walk at 3pm?

Q28.

Find the value of t in this equation.

$$
33-8 t=15
$$

Q29.
Here is a sequence of shapes made from squares and circles.

\begin{tabular}{|c|c|c|c|c|}
\hline shape number (n) \& \square
7
1 \& 2 \& \square
\square

3 \& 4

\hline number of circles (c) \& 2 \& 5 \& 8 \& 11

\hline number of squares (s) \& 3 \& 5 \& 7 \& 9

\hline
\end{tabular}

The sequence continues in the same way.
The formula for the number of circles (c)
n shape number (n) is

$$
c=3 n-1
$$

Use the formula to work out the shape number which has 104 circles.

Write the formula for the number of squares (s) in shape number (\mathbf{n}).
$S=$ \qquad

Q30.
Circle the two decimals which are closest in value to each other.
0.9
0.09
0.99
0.1
0.01

Q31.

In Class 6, 80\% of the children like crisps.
75% of the children who like crisps also like chocolate.
In Class 6, what percentage of the children like both crisps and chocolate?

Q32.
Lili and Julian each start with the same number.
Lili works out half of the number.
Julian works out three-quarters of the number.
The sum of their answers is $\mathbf{2 7 5}$
What was the number they started with?

Q33.
A, B and C stand for three different numbers.
The mean of A and B is 40
The mean of B and C is 35

$$
A+B+C=100
$$

Calculate the values of \mathbf{A}, \mathbf{B} and \mathbf{C}.

Q34.
Draw a line from each of the expressions on the left to an equivalent expression on the right.

$$
w+12
$$

$$
(w+5)+(w-7)
$$

$$
(w+5)-(w+7)
$$

$$
2 w+12
$$

$$
w-2
$$

Q35.

Write two decimals, each less than $\mathbf{1}$, which multiply to make 0.1

$$
\square \times \square=0.1
$$

Mark schemes

Q1.
14
! Algebra
See guidance

or

Shows or implies a correct first step of algebraic manipulation that either reduces the number of terms or collects variables on one side of the equation and numbers on the other, eg:

- $2 y+12=40$
- $7 y=5 y+28$
- $7 y-5 y=40-12$
- $2 y=28$
- $28 \div 2$
! Condone correct embedded solutions
Award 1 mark, for a response which shows 14 as the embedded solution to their working, eg:
- $7 y+12=5 y+40$
$(7 \times 14)+12=(5 \times 14)+40$
$110=110$

Q2.
Award marks as shown below for values of n and p which meet the following criteria:

	n:p	
	2:3	3:2
\boldsymbol{n} is multiple of $\mathbf{5}$ and p is multiple of 6	2 marks [A]	1 mark [C]
\boldsymbol{n} is multiple of 5 or \boldsymbol{p} is multiple of 6	1 mark [B]	0 marks

The following examples are worth 2 marks:

- $n=20$ and $p=30[\mathrm{~A}]$
- $n=80$ and $p=120$ [A]
! For $2 m$ or 1 m , accept multiple answers provided all meet the requirements for the mark(s) and are clearly distinguishable as separate answers, eg for 2 marks
- $n=20,40,60$
$p=30,60,90$

or

The following examples are worth 1 mark:

- $n=5$ and $p=7.5[\mathrm{~B}]$
- $n=10$ and $p=15[B]$
- $n=4$ and $p=6[B]$
- $n=90$ and $p=60$ [C]

OR

Shows or implies a method for rearranging $\frac{n}{p}=\frac{2}{3}$
which moves p from the denominator, eg:

- $3 n=2 p$
- $n=\frac{2 p}{3}$

OR

Shows or implies a complete correct method, eg:

- $2 \times 5 \times 6: 3 \times 5 \times 6$
! For 1 m , condone a list of at least five additional ratios or fractions equivalent to ${ }^{\frac{2}{3}}$ with none incorrect

Q3.
(a) 400
or
Shows or implies a complete correct method, eg:

- $30 \%-25 \%=5 \%$

$$
5 \%=20
$$

$$
100 \%=20 \times 20
$$

(b) 111.6 or 112

Do not accept 111

Q4.
2.5

Accept equivalent fractions or decimals

Q5.

216
or
54 seen (angle for mushroom soup)

OR

Shows or implies a correct method for tomato soup with not more than one computational error, eg:

- $\quad 360-90=240$ (error)
$240 \div 5=48$
$48 \times 4=192$
- 0.6×360
- 25% = chicken
$75 \% \div 5=15 \%$
15% of $360^{\circ}=54^{\circ}$
$54^{\circ} \times 4$
or
Shows the angle representing tomato soup and mushroom soup is 270

OR

60% or $\frac{3}{5}$ seen (as evidence of a correct method for tomato soup)

OR

Shows or implies a correct method for finding the angle required to represent mushroom soup, eg:

- $360^{\circ}-90^{\circ}=260^{\circ}$ (error) $260^{\circ} \div 5=40^{\circ}$ (error)

OR

Shows or implies a correct method for tomato soup with more than one computational error, eg:

- $360^{\circ}-90^{\circ}=240^{\circ}$ (error) $240^{\circ} \times 4 \div 5=200^{\circ}$ (error)

Do not accept tomato soup is 270°
Do not accept methods involving drawings of pie charts,
without any values given
Accept equivalent fractions or decimals, eg:
. $\frac{6}{10}$

- 0.6

Do not accept 60 or 60° for 60%

Q6.
(a) 36

Do not accept equivalent fractions or decimals
(b) 46

Do not accept equivalent fractions or decimals

Q7.
Gives a correct explanation that converts the given fractions to decimals or fractions with a common denominator / numerator or percentages, eg:

- $\frac{4}{7}=\frac{36}{63}$ but $\frac{5}{9}=\frac{35}{63}$
- $0.57142 \ldots>0.55555$
- Because there is a $\frac{1}{63}$ difference between the two

For $\frac{4}{7}$ accept:

- 0.57(...) or 57(. ...\%)

For ${ }^{\frac{5}{9}}$ accept:

- $\quad 0.56$ or 0.55(...) or 56(\%) or 55(. ...\%)

Accept minimally acceptable explanations, eg:

- $\frac{36}{63} \frac{35}{63}$
- 0.560 .57

Do not accept incomplete explanations that fail to convert both fractions to a common format, eg:

- $\frac{4}{7}$ is 0.57 so it is bigger
- 9ths are smaller than 7ths and there is only one more 9th
than 7th so $\frac{4}{7}$ is greater
! Condone method of conversion incorrectly expressed in an otherwise correct explanation, eg:
- $\frac{4}{7} \times 9=\frac{36}{63}$

Q8.
32
or
160 seen (the total children in the school)
Do not accept 160° or 160%

OR

Shows or implies a complete, correct method, eg:

- $\quad 35+45=90$ (error)
$100-90=10$
$56 \div 35=1.6$
$1.6 \times 10=16$
- 35% of children $=56$
total children $=56 \times 100 \div 35=150$ (error)
Reception $=100-(45+35) \%=20 \%$
Reception $=20 \%$ of 150
$0.2 \times 150=40$ (error)
- 35% is 56
5% is 8
20% is $4 \times 8=24$ (error)

Q9.
(a) $\frac{1}{20}$ or equivalent

Accept equivalent fractions, decimals or percentages, eg:

- 5%
- 0.05
- $\frac{5}{100}$

Do not accept 5 without a percentage sign
(b) 95

Do not accept equivalent fractions or decimals

Q10.
(a) 302
(b) 49
or
Shows or implies a correct first step of algebraic manipulation that either reduces the number of terms or collects variables on one side of the equation and numbers on the other, eg:

- $2 s=100-2$
- $s=98 \div 2$
! Correct embedded solutions
Award 1 for a response which shows
49 as the embedded solution to their working

OR

Shows or implies a complete correct method, eg:

- $(100-2) \div 2$

Q11.

$\frac{3}{10}$ or equivalent
Accept equivalent fractions, decimals or percentages
or
Shows or implies a complete correct method and no conceptual errors, eg:

- Shaded fraction is $\frac{1}{5}+\frac{1}{5}=\frac{2}{5}$

Fraction of total white area $=1-\frac{2}{5}=\frac{3}{5}$

$$
\begin{aligned}
& \frac{3}{5} \div 2 \\
& \frac{1}{5}+\frac{1}{5}=20 \%+20 \%=30 \% \text { (error) }
\end{aligned}
$$

$$
\text { White area }=70 \%
$$

Each white area $=35 \%$
$!30$ with no \% sign
Accept for 1 m as evidence of a correct method

$$
\frac{1.5}{5} \text { or } \frac{1 \frac{1}{2}}{5}
$$

Accept for 1 as evidence of a correct method
(incorrect notation for $\frac{3}{5} \div 2$)
Do not accept conceptual errors seen, eg:

- $\frac{1}{5}+\frac{1}{5}=\frac{2}{10}$
- $\frac{1}{5}+\frac{1}{5}=5 \%+5 \%=10 \%$
- $\frac{6}{10} \div 2=\frac{3}{5}$

Q12.
10
or
Shows or implies a complete correct method, eg:

- $100-(15+75)$
- No salad, 100-75=35 (error)

Cheese without salad, 35-15

- Tuna with salad, $75-30=45$

Tuna, $45+15=55$ (error)
Cheese, $100-55=45$
Cheese without salad, $45-30=5$ (error)

		salad	
cheese	30	error	
tuna	45	15	
	75	25	100

Q13.
9.6 or equivalent, eg:

- 9.60
! Measures
or
Shows or implies the correct scale factor, eg:
- $\times 3$ seen
- $13.5 \div 4.5=3$
- $\quad 3.2+3.2+3.2$
- 1:3

OR
Shows the digits 96

OR

Shows or implies a complete correct method, eg:

- $13.5 \div 4.5 \times 3.2$
- 2.10 (error)
$4 . 5 \longdiv { 1 3 . 5 }$
$3.2 \times 2.10=6.4$ (error)

Q14.
$\frac{1}{2}$ or equivalent
! Algebra
Accept equivalent fractions or decimals
or

Shows or implies a correct first step of algebraic manipulation that either reduces the number of terms or collects variables on one side of the equation and numbers on the other or correctly removes the brackets, eg:

- $8 y+96=100$
- $y+12=100 \div 8$
- $8 y=4$

OR

Shows or implies a complete correct method, eg:

- $100 \div 8=12$ (error)
$12-12=0$
- $25 \times 4=100$
$12.5 \times 8=100$
12.5-12

Do not accept a first step of algebraic manipulation which has a conceptual error, eg:

- $y+12=100$
- $y+96=100$
- $8 y+12=100$
! Correct embedded solutions
Award 1 m for a response which shows $\frac{1}{2}$, or equivalent, as the embedded solution to their working

Q15.

Gives only the three correct prime numbers in any order, ie:

- $37,41,43$
or
Gives at least two correct prime numbers and not more than one incorrect number, eg:
- $37,39,41,43$
- $39,41,43$
- 41,43

Q16.
(a) Gives an answer in the range 25 to 29 inclusive
(b) Gives an answer in the range 44 to 52 inclusive

Q17.
(a) Gives a correct explanation, eg:

- Her average is 15.75
- $14+23+13+13=63$ $63 \div 4$ is more than 15
- If the average is 15 , Monday Wednesday and Thursday total 5 below and Tuesday is 8 above so the average must be >15
- To walk an average of 15 km a day you need to have walked 60 km . Megan has walked 63 km so she is over the average of 15 km

Accept minimally acceptable explanation, eg:

- $63 \div 4$
- $63 \div 4=16$
- $63 \div 4=15$ r 3

Do not accept incomplete or incorrect explanation, eg:

- If you add up how far she walked in four days and divide by 4, it's more than 15
- $14+23+13+13=63$
- $63 \div 4=15$
(b) 22

! Follow-through of incorrect total or average

For $2 m$ or 1m, accept follow-through from incorrect value for the average or the total calculated for part (a) used correctly in part (b), eg:

- for 16 as answer in part (a), award 2 marks for $85-4 \times$ $16=21$
or
85 seen (the total for 5 days)
! Correct embedded solutions
Award 1m, for a response which shows 22
as the embedded solution to their working

OR

Shows or implies a complete correct method, eg:

- $(17 \times 5)-14-23-13-13$

Q18.

80
! Measures
or
Shows or implies a complete correct method, eg:

- $(10 \times 10.5)-\left(\frac{1}{2} \times 10 \times 5\right)$
- $\frac{1}{2}(5.5+10.5) \times 10$
- $(10 \times 5.5)+\left(\frac{1}{2} \times 10 \times 5\right)=55+22.5$ (error)

Q19.

Gives a correct explanation with a number x such that $50 \leq x<55$, or $-5<x<5$, as an example, eg:

- $\quad 53$ to the nearest hundred is 100 , and to the nearest ten is 50 and $2 \times 50=100$
- If it's 50 or more but less than 55 it will round to 100 (nearest hundred) and 50 (nearest ten) and 100 is double 50
- $\quad 0$ is 0 to the nearest 100 and 0 to the nearest 10 and twice 0 is 0

Accept minimally acceptable explanation, eg:

- 51 rounds to 50 and 100
- $54 \rightarrow 50$ and $54 \rightarrow 100$
- 50 rounds to 100
- 0 rounds to 0

Do not accept incomplete or incorrect explanation, eg:

- They used 51
- $50 \times 2=100$
- They could use between 50 and 55 , which round to 100

Q20.
(a) Gives a value for y such that $10 y+2$ is a prime number, eg:

- 0
- $\frac{1}{2}$
- $\quad 1.7$
(b) Gives a value for y such that $10 y+2$ is a square number, eg:
- -0.1
- 0.2
- 0.7
- $\quad 1.4$

Q21.
(a) $5: 1$

Do not accept ratio not simplified, eg

- 15:3
(b) 2006
or
Identifies that Tom will be 18 and Ben will be 6, eg:
- $3: 1=18: 6$
- $13: 1$
$14: 2=7: 1$
$15: 3=5: 1$
$16: 4=4: 1$
17:5
18: 6

Q22.
6

Q23.

Gives all three possible values for k, in any order, eg $15,16,17$

Gives both possible values for w, in either order, eg 6, 7

As evidence of a correct method:
Gives a completely correct response to at least one question part

OR

Makes not more than three errors or omissions throughout the question, eg:

- For the 1st part: 15, 16, 17, 18 [one error] For the 2nd part: 7 [one omission]
- For the 1st part: 14, 15, 16 [one error, one omission] For the 2nd part: 6, 7, 8 [one error]
- For the 1st part: 15 [two omissions] For the 2nd part: 7 [one omission]

OR

Includes non-integers within an otherwise correct response for at least one question part, eg:

- For the 1st part: 15, 15.5, 16, 16.5, 17
- For the 1st part: 14.5

